Indian Statistical Institute, Bangalore

B.Math (Hons.) I Year, Second Semester Semestral Examination 30 April 2012 Instructor: C.R.E.Raja Maximum marks: 50

Time: 3 hours Analysis II

Section I: Answer any four and each question is worth 6 marks

- 1. Let *E* be a subset of a metric space *X*. Then show that $x \in X$ is a limit point of *E* if and only if there is a sequence (x_n) in *E* such that $x_n \to x$ and $x_n \neq x$.
- 2. Let $f: [a, b] \to \mathbb{R}$ be a monotonically increasing function. Prove that $f \in \mathcal{R}[a, b]$.
- 3. Let $f \in \mathcal{R}[a, b]$ and $\epsilon > 0$. Prove that there is a continuous real-valued function g on [a, b] such that $\int_a^b |f g| < \epsilon$.
- 4. Let $f:[a,b] \to \mathbb{R}$ be a bounded function. Suppose $f \in \mathcal{R}[c,b]$ for all $c \in (a,b)$. Prove that $f \in \mathcal{R}[a,b]$ and $\int_a^b f = \lim_{c \to a} \int_c^b f$.
- 5. Let E be an open subset of \mathbb{R}^n and $f: E \to \mathbb{R}^m$ be a differentiable function. Prove that partial derivatives exist on E and obtain f'(x) in terms of partial derivatives.
- 6. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by $f(x, y) = \frac{x^3}{x^2 + y^2}$ if $(x, y) \neq (0, 0)$ and f(0, 0) = 0. Show that $\lim_{t\to 0} \frac{f(tu)}{t}$ exists for any $u \in \mathbb{R}^2$ and find $D_i f$ for i = 1, 2. Is f differentiable at (0, 0)?

Section II: Answer any two and each question is worth 13 marks

- 1. (a) Prove that compact subsets of metric spaces are closed.
 - (b) Let A and B be closed sets in \mathbb{R} .
 - (i) Prove that $A \times B = \{(a, b) \in \mathbb{R}^2 \mid a \in A, b \in B\}$ is a closed subset of \mathbb{R}^2 .

(ii) Further if A is bounded, prove that $A + B = \{a + b \in \mathbb{R} \mid a \in A, b \in B\}$ is closed in \mathbb{R} .

- 2. (a) Let $f \in \mathcal{R}[a, b]$ and $F: [a, b] \to \mathbb{R}$ be given by F(a) = 0 and $F(t) = \int_a^t f$ for $t \in (a, b]$.
 - (i) Prove that F is continuous on [a, b].
 - (ii) Further if f is continuous, then prove that F is differentiable and F' = f.
 - (b) If $f \in \mathcal{R}[a, b]$, prove that $\lim_{n \to \infty} \frac{b-a}{n} \sum_{k=1}^{n} f(a + k \frac{(b-a)}{n}) = \int_{a}^{b} f(x) dx$.

3. Let E be an open set in ℝⁿ and f: E → ℝ^m be a function with partial derivatives.
(a) If partial derivatives of f are bounded, prove that f is continuous on E.
(b) If partial derivatives of f are continuous, prove that f is differentiable on E.